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Atomic structure of materials 

!   atomic structure is fundamental for characterization and understanding of materials 

!   most structures have been determined from X-ray diffraction experiments 

!   for crystal structures the scattering pattern reduces to several tens / hundreds of Bragg 
reflections (corresponding to planes of atoms in the crystal) 

!   structure can be depicted by a few variables (unit cell parameters, positions of 
symmetry-independent atoms) à over-constrained problem à structure determination 
is routine 

 



Nanostructure problem 

!   none or few Bragg reflections à�
conventional crystallography fails 

!   assumption of crystal periodicity à  
local distortions may be missed by 
conventional crystallography 

!   need to use other probes for nanoscale 
structures 

 

V2O5.nH2O xerogel 
nanocrystalline 

V2O5  crystalline 

[V. Petkov, et. al., J. Am. Chem. Soc. 121, 10157 (2002)] 



 Total scattering PDF technique 

!   Rapid Acquisition PDF experiment, 
Chupas et al., J. Appl. Crystallogr. (2003) 

!   100 ms exposure times, can handle in-situ studies 

!   use the entire diffraction pattern à Bragg peaks AND the diffuse scattering 

!   Fourier transformation of TS data gives Pair Distribution Function à 
direct probe of interatomic distances 



PDF – the atomic Pair Distribution Function 

Pair distribution function (PDF) provides probability of finding  
distance “r” between two atoms in the material. 



Methods for analyzing experimental PDFs 

direct readout  
!   bond distances and their variations 

big box modeling 
!   Reverse Monte Carlo (RMC)    [Pusztai & McGreevy, Physica B, 234-236, (1997)] 
!   ~104 atoms in a large box with periodic boundary conditions 
!   MC position optimization à excellent fit to the experimental PDF 
!   many degrees of freedom – RMC modeling requires  

constraints to produce physically feasible structures 
!   interpretation of 104 coordinates – bond length and angle statistics 

small box modeling 
!   up to ~100 atoms in a small cell with periodic boundary conditions 
!   PDF modeling can be focused to a short, specific length scale 
!   simple refinement 

–  start with reasonably accurate initial structure 
–  downhill minimization of the model variables to fit observed PDF 

!   structure determination 
–  extract experimental pair-distances from the PDF 
–  find shape that reproduces the same set of pair distances 

!   complex refinement 
–  additional cost terms (atom overlap, bond valence sums,…) 
–  mixed contributions from molecules and crystalline phases 



Successful structure determination from PDF 

!   highly symmetric rigid molecule à sharp, well resolved PDF peaks à  
measured signal carries enough information to solve the structure 

!   PDF data from neutron diffraction of C60  
!   convert PDF data to a list of atom distances (60 atoms, 1770 distances) 
!   extracted 18 out of 21 unique distance values 
!   structure determination was still successful 

[Juhás et. al, Nature 440, 655-658 (2006)] 
[Juhás et. al, Acta Cryst. A 64, 631-640 (2008)] 





Failed structure determination from PDF 

! CdSe nanoparticles from Dr. Cossairt, Chemistry Dept., Columbia Univ. 
!   X-ray PDF measured at X17B, NSLS, Brookhaven laboratory 
!   red-phase well modeled by a mix of bulk CdSe phases 
!   yellow-phase (Cd35Se28) has more complicated structure (distorted A-B4 

tetrahedra), poorly resolved peaks à no luck with structure solution 

Cossairt, B. et al., J. Phys. Chem. Lett. 2, 3075−3080 (2011) 



Complex modeling 

Problem 

!   not enough information in the 
available experimental data 
 

Remedy 

!   collect data from multiple 
experimental techniques 

!   use additional knowledge about 
the studied material - chemical 
constraints, rigid units, bond-
valence sums, energy calculation  

!   combine all experimental and 
theoretical inputs about the 
structure in one optimization 
scheme 

!   requires flexible software tools to 
setup custom models adaptable 
for specifics of studied materials. 



DiffPy-CMI – Complex Modeling Infrastructure 

!   tools for PDF, BVS, SAS simulations, 
structure data handling, multi-input 
optimizations 

!   Python and C++, object-oriented, 
reusable, extensible libraries 

!   code-base derives from DANSE, 
http://danse.us/ 
Caltech, SNS/ORNL 

 
 

!   available since March 2014,  
http://www.diffpy.org/ 
for Linux, Mac, UNIX systems 
 

upgrade release on March 2016 

!   available for Anaconda Python on 
Linux and Mac: 

$ conda install –c diffpy diffpy-cmi!



DiffPy-CMI – open source project 

!   developer team at BNL: 
 

Pavol Juhas, Hubertus 
Van Dam, Simon J.L. Billinge 

!   open source project, all 
code repositories are on 
GitHub 

past developers: Kevin Knox, Michael McKerns, 
Christopher Farrow, Dmitriy Bryndin, Jiwu Liu, 
Yingrui Shang, Peng Tian, Wenduo Zhou, Milinda 
Abeykoon, Emil Bozin, Timur Dykhne 



DiffPy-CMI – software deployment 

!   Linux and Mac binary 
packages for Anaconda 
Python 

!   packages hosted in the 
“diffpy” channel at Anaconda 
cloud 

!   seamless installation and 
updates for end-users 



DiffPy-CMI – user community support 

cmi_exchange 

!   project on GitHub to provide 
examples, tips, script sharing 

!   user contributions welcome 
 

diffpy-users, diffpy-dev 

!   mailing lists at Google Groups 
 

http://www.diffpy.org/ 
 



DiffPy-CMI overview 

!   Complex Modeling Infrastructure – a software toolbox for multi-probe 
structure analysis 

!   collection of Python and C++ libraries responsible for tasks needed in 
structure analysis (structure representation, forward calculators, 
refinement configuration) 

!   object oriented architecture.  designed for extensibility, code reuse, 
support for integration with other crystallographic packages. 

!   computationally intensive parts coded in C++, designed for speed and 
extensibility.  Can be used as a pure C++ library “libdiffpy”. 

!   C++ objects are exposed to Python using boost python library.  Derived classes can 
be defined in C++ or in Python and then used from either language. 

!   Calculator are composed from objects responsible for partial tasks.  These 
objects can be configured, tweaked or replaced at runtime. 

!   no GUI, simulations and structure refinements are configured from Python 
scripts. 



DiffPy-CMI – functionality overview 

Structure Representation 
! diffpy.Structure à simple storage of P1 periodic structures, finite clusters, input and ouput for CIF, 

PDB, xyz, pdffit, discus formats.  Space group definitions, symmetry expansion, generation of 
symmetry-based constraints. 

! pyobjcryst à advanced structure representations, crystals with space group, crystals containing  
rigid molecules, bond-length and bond-angle restraints, z-matrix representation.  Input and output in 
custom XML and CIF formats.  Python interface to the ObjCryst++ crystallographic library by 
V. Favre-Nicolin, [J. Appl. Cryst. 35 (2002), 734-743] 

Forward Calculators 
! diffpy.srreal à calculators of structure-based physical quantities, such as PDF, Debye sum, 

bond lengths, bond valence sums, overlap of empirical atom radii. 
! pyobjcryst à powder and single-crystal diffraction patterns 
! srfit-sasview à selected functions for Small Angle Scattering simulations from the SasView program, 

http://www.sasview.org 

Fit configuration and management 
! diffpy.srfit à setup and control of general fitting problems, control of constraints and restraints, setup 

of refinements to multiple data sources, simple analysis of fit results 

C++ libraries 
! libdiffpy – computationally expensive parts - PDF, BVS, etc.  Calculation of pair-sum based quantities. 
! libObjCryst – free objects for crystallography by Vincent Favre-Nicolin,  

[J. Appl. Cryst. 35 (2002), 734-743]. 



PairQuantity – a template calculator 

!   the base calculator – abstract recipe for evaluating physical quantities derived 
from pair-interactions.  
 
 
 

!   common structure 
adapters and distance 
generation code 

!   support for partial sums 

!   option for parallel 
evaluation 

!   support for fast updates 
by re-evaluating 
contributions from the 
changed atoms 



PairQuantity-derived calculators 

!   derived concrete calculators override the addPairContribution() method 
 
 
 



BondCalculator 

!   calculate oriented bond vectors up to a specified distance limit 

!   optional filtering by atom types, site indices, direction cones 
 

example: 

>>> from pyobjcryst.crystal import CreateCrystalFromCIF 
>>> from diffpy.srreal.bondcalculator import BondCalculator 
>>> rutile = CreateCrystalFromCIF(open('TiO2_rutile.cif')) 
>>> bc = BondCalculator(rmax=2) 
>>> bc(rutile) 
array([ 1.94720295,  1.94720295,  1.94720295,  1.94720295,  1.94720295, 
        1.94720295,  1.98177183,  1.98177183,  1.98177183]) 
>>> for i in zip(bc.distances, bc.types0, bc.types1, bc.directions): 
...     print i 
... 
(1.9472029472402153, 'Ti', 'O', array([-0.8951757,  0.8951757, -1.4795])) 
(1.9472029472402153, 'Ti', 'O', array([-0.8951757,  0.8951757,  1.4795])) 
(1.9472029472402153, 'Ti', 'O', array([ 0.8951757, -0.8951757, -1.4795])) 
(1.9472029472402153, 'Ti', 'O', array([ 0.8951757, -0.8951757,  1.4795])) 
(1.9472029472402153, 'O', 'Ti', array([ 0.8951757,  0.8951757, -1.4795])) 
(1.9472029472402153, 'O', 'Ti', array([ 0.8951757,  0.8951757,  1.4795])) 
(1.9817718303429834, 'Ti', 'O', array([-1.4013243, -1.4013243,  0.    ])) 
(1.9817718303429837, 'Ti', 'O', array([ 1.4013243,  1.4013243,  0.    ])) 
(1.9817718303429837, 'O', 'Ti', array([-1.4013243, -1.4013243,  0.    ])) 



BVSCalculator 

!   bond valence sums – approximate  
formula for ion valences 
 

!   evaluates valence at each site, BVS difference, mean square BVS difference 
which accounts for partial occupancies and site multiplicities 

!   related: class BVParametersTable 
–  lookup of bond valence parameters, [bvparm2009.cif by I. D. Brown] 
–  option to define and revert custom BVS parameters 

 
example: 

Brese, Acta Cryst. B47, 192-197 (1991) 

>>> from pyobjcryst.crystal import CreateCrystalFromCIF 
>>> from diffpy.srreal.bvscalculator import BVSCalculator 
>>> sto = CreateCrystalFromCIF(open('SrTiO3.cif')) 
>>> bvsc = BVSCalculator() 
>>> bvsc(sto) 
array([ 2.12652479,  4.16096701, -2.0958306 ]) 
>>> bvsc.bvdiff 
array([-0.12652479, -0.16096701, -0.0958306 ]) 
>>> bvsc.bvmsdiff 
0.013893882037591496 



PDFCalculator 
!   PDF calculation in real-space 

–  suitable for periodic systems 
–  one structure per calculator à mixed-phase PDFs obtained by  

combining several PDFCalculator objects 
!   other results: radial distribution function, partial PDFs, F(Q) 
!   class ScatteringFactorTable 

–  lookup of xray, netron or electron scattering factors 
–  support for custom scattering factors 

!   class PeakProfile – the profile function for a pair contribution 
!   class PeakWidthModel – calculates profile width for a given atom pair 
!   class PDFEnvelope – one or more r-dependent scaling envelopes 
!   class PDFBaseline – the baseline function, by default  –4πρ0 r 
 
example: 

>>> from diffpy.Structure import Structure 
>>> from diffpy.srreal.pdfcalculator import PDFCalculator 
>>> sto = Structure(filename='SrTiO3.cif') 
>>> pdfc = PDFCalculator(rmax=15, qmax=25) 
>>> r, g = pdfc(sto) 
>>> import pylab 
>>> pylab.plot(r, g) 



SrFit – multi-component fit manager 

!   Python module for general multi-component data refinement 
!   construct FitContribution by associating observed data with simulation 

–  models can be defined with built-in calculators, math expressions,  
Python functions 

–  model parameters are exposed to SrFit.  Parameters can be constrained or 
restrained, e.g., “a = b = c” for cubic structure 

! FitContributions are combined to a single total cost function (residual vector  
or scalar value) with interface suitable for optimization routines 

!   control functions to fix/free variables, define constraints, restraints, hook functions 
!   post-processing to generate fit result reports – partial costs per each contribution, 

error estimates and correlations of the fit variables. 
 



PDF modeling of fcc-C60 

!   neutron PDF measured on 
C60 fcc structure 
[GLAD IPNS, E. Bozin] 

!   low-r sharp peaks – 
correlations within C60 

!   high-r broad peaks – 
correlations between 
randomly oriented balls 
 

Can we simulate PDF on  
a full measured range? 
 
!   calculate as a sum of single 

particle PDF and PDF from 
a lattice of spherical shells 



!   PDF from two spherical shells can be 
calculated analytically  
 
 
 
 
 

 triangular profile centered at sphere 
separation L and with FWHM equal D 
 

! fcc arrangement of spherical shells à 
PDF calculation requires  
triangular profile function  

DiffPy-CMI supports user-defined 
profiles for PDF simulations. 

PDF peak profile for spherical shells 

L 



Definition of custom peak profile 

!   new profile functions can be 
added either in Python or C++  

!   for C++ the profile function is 
compiled as a dynamic link 
library sphericalshells-cpp.so 

!   when loaded the library adds 
new profile to the global registry 
à profile is ready for use in 
Python 

!   no need to rebuild any C++ 
library in DiffPy-CMI 

!   no need to write Python 
wrappers for the new profile 
function 

#include <cmath> 
#include <diffpy/srreal/PeakProfile.hpp> 
 
using diffpy::srreal::PeakProfile; 
using diffpy::srreal::PeakProfilePtr; 
 
class SphericalShellsProfile : public PeakProfile { 
public: 
    PeakProfilePtr create() const { 
        return PeakProfilePtr(new SphericalShellsProfile()); 
    } 
 
    PeakProfilePtr clone() const { 
        return PeakProfilePtr(new SphericalShellsProfile(*this)); 
    } 
 
    const std::string& type() const { 
        static std::string tp = "sphericalshells-cpp"; 
        return tp; 
    } 
 
    double yvalue(double x, double fwhm) const 
    { 
        if (fabs(x) > fwhm)  return 0.0; 
        double rv = (fwhm - fabs(x)) / (1.0 * fwhm * fwhm); 
        return rv; 
    } 
 
    double xboundlo(double fwhm) const   { return -fwhm; } 
 
    double xboundhi(double fwhm) const   { return +fwhm; } 
}; 
 
bool reg_SawToothProfile = SphericalShellsProfile().registerThisType(); 

>>> from diffpy.srreal.pdfcalculator import PeakProfile, PDFCalculator 
>>> PeakProfile.getRegisteredTypes() 
set(['croppedgaussian', 'gaussian']) 
>>> import ctypes 
>>> ctypes.cdll.LoadLibrary('./sphericalshells-cpp.so') 
>>> PeakProfile.getRegisteredTypes() 
set(['sphericalshells-cpp', 'croppedgaussian', 'gaussian']) 
>>> pdfcalc = PDFCalculator() 
>>> pdfcalc.setPeakProfileByType('sphericalshells-cpp') 

PDFCalculator configured in Python to use new profile 

profile function defined in C++ 



PDF refinement of fcc C60 

fit residuum Rw = 0.26   scale ratio = 60.0(1)           Uiso = 0.00323(4) 
molecule diameter = 7.113(2)  shell diameter = 7.22(4) 
 
!   PDF from fcc C60 can be refined on the full measured range accounting for  

both intra and inter-molecular correlations 



 Structure of CdSe quantum dots 

!   collaboration with Prof. Jonathan Owen and Alexander Beecher, 
Department of Chemistry, Columbia University 

!   semiconducting quantum dots are promising for emerging technologies (tissue 
imaging, solid state lightning) 

!   Owen group found new synthesis route for making large-quantity of 
monodispersed CdSe quantum dots (QD) 

!   QDs can be prepared at 3 sizes from organic precursors 
!   in situ UV absorbance spectroscopy shows formation of discrete-size particles.  

Isolated large amounts of uniform particles with respective absorption peaks at 
350, 380 and 408 nm  

J. Am. Chem. Soc., 2014, 136 (30), 10645–10653 



 Structure of CdSe quantum dots 

Si Se Si2 Cd(O2CR)2 +

32 Cd(O2CPh)2+
16 Cd(O2CPh)2+

XR=

X=

R'= n-propyl, n-butyl,

-H, -F, -I, -SMe
isopentyl, n-octyl

[CdSe]n [Cd(O2CR)2]m [H2NR']l
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5 H2NR'
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a

b

Cd31Se20(O2CPh)22(H2NR')22

CdSe(350 nm) CdSe(380 nm) CdSe(408 nm)
Cd52Se35(O2CPh)34(H2NR')34 Cd80Se56(O2CPh)48(H2NR')l

14 8 5

!   single crystal diffraction from imperfect crystal of the smallest CdSe (350nm) 
suggests tetrahedral cutout from CdSe zinc-blende phase 

!   other QD sizes predicted as similar tetrahedral cutouts from CdSe terminated  
by {111} Cd planes 

!   clusters + ligands chemical formulas completed by elemental analysis, NMR 
and infrared absorption 

J. Am. Chem. Soc., 2014, 136 (30), 10645–10653 



 Structure of CdSe quantum dots 

!   experimental PDFs measured at 100K at the beamline X17A, NSLS, BNL 
!   tetrahedral QD models gave excellent fit with the PDFs at  Rw = 0.14, 0.12, 0.10  

 
 
 
Is such PDF agreement unequivocal for tetrahedrally shaped clusters? 
 
!   If yes, the tetrahedral shape can be solved from the PDF data. 
!   small particle size, sharp PDF peaks at zinc-blende separations à  

PDF structure determination should be feasible. 



!   assume structure is a cutout from CdSe zinc-blende of up to 100 atoms 
!   use generalized Liga algorithm to optimize cut-out size and shape 

 Shape determination of CdSe QD-s 

(4-atom clusters) 

3 

2 

1 

!   evaluate structure cost as the PDF fit residuum Rw 
–  refine lattice expansion, scaling, Uiso,Cd, Uiso,Se, δ2 

!   track large number of clusters at sizes from 1 to 100 atoms 
!   good-cost clusters add 1 atom and are promoted to higher level 

–  atoms are added as neighbors of sites with CN < 4. 

!   poor-cost clusters remove 1 atom and descend to lower level 
–  only surface atoms (CN < 4) can be removed.   

neck atoms are protected (avoid splitting). 



 Shape determination of CdSe QD-s 

Sample possible zinc-blende cutouts and look for 
structure with minimum cost (best PDF fit). 

 

Animation by Dr. Kevin Knox. 



 Shape determination of CdSe 380 nm 

!   visited ~2.5×105 unique clusters 
!   ~50% had better PDF fit than the tetrahedral model Cd52Se35 

best found 87-atom 
structure Cd53Se34 
Rw = 0.180 

tetrahedral model  
Cd52Se35,  Rw = 0.188 
 

!   PDF has insufficient sensitivity to particle shape 
(which only shows in PDF amplitudes decay) 

PDF agreement is insufficient to confirm tetrahedral model à 
more inputs are necessary for unique structure identification. 



 Overview of PDF-optimized shapes 

CdSe shapes optimized to PDF have much higher BPA than 
the tetrahedral model. 

!   each dot represents unique 
CdSe cluster visited in PDF 
optimizations 

!   dots are colored according 
to cluster size 

!   red star is the tetrahedral 
model Cd52Se35 

“surface area” assessed as number of unoccupied 
bonds-per-atom (BPA) 
 

 BPA = 4 — CN  

CN=1 

2 

3 



 Shape optimization from BPA (surface area) 

!   BPA minimization prefers {111} facets, where surface atoms have 3 bonds.  

!   cost function set to BPA, optimized clusters of sizes of up to 100 atoms    

!   minimum values of BPA found for 35 and 68 atoms 



 PDF + BPA optimization 

!   shape optimization conducted for several BPA:PDF weight ratios 
!   best structures at 1:1 weight ratio are close to tetrahedra, however 
!   BPA is approximate and has no direct sensitivity to sample shape 



 CdSe SAXS measurement 

!   SAXS data were collected at  
the APS 9ID-D beamline  
(thanks to Jan Ilavsky) 

!   measured 3 samples of CdSe QD-s 
in dilute toluene solutions 

! desmeared USAXS and SAXS signal 
combined merged in IRENA; 
Q-range of [0.01, 1.2] / A 



 CdSe SAXS simulations 

!   SAXS signal has been modeled 
with Debye Scattering Equation 

!   measured Q-range is well 
sensitive to the shape of CdSe 
models 

!   SAXS shows clear difference 
between corner-truncated and 
full-sized CdSe tetrahedral models 



 CdSe shape determination from ideal SAXS 

! Liga cost function set to SAXS fit residual 
 

log(Iobs) – log(Icalc)     where 
Icalc(Q) = A IDSE(Q) + B 

! CdSe shape determination run from ideal 
SAXS data at varying Qmax 

–  successful shape determination 
for Qmax = 5/A 

–  apparent cost vs. size minimum for 
Qmax = 2.4/A 

–  no convergence for Qmax = 1.4/A 

!   experimental SAXS data are not sufficient  
for unique shape determination. 



 Shape determination from PDF + SAS combination 

! CdSe shape optimized w/r to a combined cost function:    C = WPDF CPDF + WSAS CSAS 
!   CPDF, CSAS costs are coupled, because they both depend on the lattice expansion 
!   CPDF, CSAS give competing lattice expansion (-1% vs -0.5%) 
No convincing structure found consistent with both PDF and SAS. 

Cd52Se35  
(PDF only) 



Summary 

!   limited resolution in the measurements à it is crucial to combine multiple 
experimental and/or theoretical inputs for nanostructure solution and 
validation. 

!   excellent PDF agreement is not sufficient for a unique structure solution 
!   complex modeling provides verification of combined probes,  

detects systematic errors for shared variables. 
! DiffPy-CMI – software framework for complex modeling, structure 

representations and manipulations, calculators for PDF, BVS, SAS, 
multi-component fit management, extensible, open source.  
http://www.diffpy.org 
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